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A feature is a local configuration of grey-levels in an image. Removing some
types of features can be considered as similar to extracting other types of fea-
tures, namely those that are not removed. Both operations can be modeled
abstractly by an idempotent operator. We examine various meanings of these
operations, and link their semantics to algebraic properties of feature operators.
Our exposition is informal as far as possible.
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1. INTRODUCTION

A feature means generally a visible local event in an image, and it manifests
itself as a peculiar configuration of grey-levels or colours. In mathematical
morphology, an image is analysed through its interactions with templates called
structuring elements. Thus here a feature will represent a template in the
image, whose shape (both in space and grey-levels) is linked in a precise way
to that of the structuring element.

One can consider that the image is made up of a combination of features
and of “non-feature elements”, which represent non-local characteristics of the
image (such as a constant base grey-level). Extracting one or several types of
features means keeping these features and removing other types of features as
well as non-feature elements. Removing some types of features means keeping
other types of features as well as non-feature elements. Thus feature extraction
and feature removal can be considered as equivalent operations in so far as we
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restrict the image to features, the set of extracted features being the comple-
ment of the set of removed features. The main difference between the two lies
in the behaviour w.r.t. non-feature elements, namely removing them in feature
extraction, and keeping them in feature removal.

From the point of view of mathematical morphology, a fundamental re-
quirement for a “perfect” feature extractor or remover is, as in the case of a
“perfect” filter, idempotence, which means that applying the operation a second
time does not change anymore the image. Indeed, when a feature is removed,
this is done completely, so nothing remains to be removed afterwards; on the
other hand, an extracted feature is complete, and can thus be extracted from it-
self. This requirement may exclude certain features which can exist only within
a certain context which is not preserved by the feature extraction; for example
let us say that a circle is a feature if it is adjacent to a square; extracting the
feature could give the circle without the square, and the circle would thus not
be preserved by a further feature extraction.

Now a feature remover or extractor can be specified by other properties
than simply idempotence. We can for example give additional mathematical
properties of this operator, generally of an algebraic nature; in mathematical
morphology it is customary to examine properties related to the ordering rela-
tion between images and to the composition of operators. We can also describe
the types of features to be extracted or removed, and the criteria used for this
purpose; this is what we call the semantics of feature extraction or removal.

We will describe here several types of operators for feature extraction or
removal previously described in the literature, and explain how their semantics
relates to their algebraic properties. For the simplicity of exposition, we restrict
ourselves here to anti-extensive operators, that is those which diminish the ob-
ject; in other words only positive (bright) features will be extracted or removed.
We will consider as feature removers: openings for removing small or isolated
features, open-condensations for choosing the “best” opening approximating an
object. As feature extractors, we will examine: open-overcondensations which
extract features according to both foreground and background templates, and
top-hats arising from subtracting the result of an opening from an image.

Asg far as possible, we give to our exposition a relatively informal style,
because the results presented here are already known. The only exception is in
Section 3.2, where we present new material. Formal mathematical expositions
on morphology can be found in the references. As general expository texts we
recommend [4, 12].

2. FEATURE REMOVAL
Here we consider two types of operators: openings [11, 12, 4], and open-conden-
sations [6]. We first give their formal definition, then describe their possible
semantics.

We write S for the space of pictorial objects (binary figures, grey-level or
colour images, etc.). This space is supposed to be ordered by a partial order
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relation < whose meaning is the following: for sets, X < Y means that X
is included in Y’; for grey-level images X < Y means that at every point p,
the grey-levels X (p) and Y (p) of X and Y at p must satisfy X(p) < Y(p);
for RGB colour images, at a point p the images X and Y have RGB values
X(p) = (Xr(p), Xy(p), Xo(p)) and Y(p) = (Y;(p),Yy(p),Ys(p)), and X <Y
means that at every point p we have X, (p) < Y,.(p), Xy(p) < Y,y(p), and
Xp(p) < Ya(p)

We assume further that with this ordering <, S has the structure of a
complete lattice. This means that for every family X; (i € I) of elements of
S, there is in S a least upper bound or supremum of it, written \/,.; X; or
V{X; | i € I}, as well as a greatest lower bound or infimum of it, written
Nicr Xi or A{X; |i € I}. For sets, these operations correspond to the union
and intersection; for grey-level images, the supremum and infimum is obtained
by taking at each point p the numerical supremum sup;c; X;(p) and infimum
inf;e; Xi(p) of the respective grey-levels X;(p) of all images X;; for RGB im-
ages, we take such a supremum and infimum in each R, G, B band at every
point p.

For more details and other examples concerning the ordering and complete
lattice structure of pictorial objects, the reader is referred to [4, 12].

We give here the formal definition of openings (from [11, 12, 4]) and open-
condensations (from [6]); here X, Y, and Z designate arbitrary elements of

S:

DEFINITION 1. An opening on S is an operator v : S — S satisfying the
following three requirements:

1. v is anti-extensive: y(X) < X.
2. v is idempotent: y(y(X)) = v(X).
3. v isincreasing: X <Y = y(X) <~(Y).

DEFINITION 2. An open-condensation on S is an operatory : S — S satisfying
the following three requirements:

1. v is anti-extensive.
2. v 1s idempotent.
4. v is condensing: if X <Y < Z and v(X) = v(Z), then y(YV) = v(X).

It should be noted that every opening is an open-condensation. There is an
alternate definition of open-condensations (see Proposition 2.2 of [6]):

LEMMA 3. An operator v : S — S is an open-condensation if and only it
satisfies the following two requirements:

1. v is anti-extensive.

441



5. (X)) <Y <X = (V) =y(X).

Having given the mathematical characteristics of the operators we are in-
terested in, let us explain their possible meanings in terms of features.

2.1. Remouving small parts

Historically openings have been associated with the concept of size distribution
[11]: given a particular size, we apply to our data a kind of sieve that keeps all
particles (or parts) bigger or equal to that size, and lets fall all those smaller
than that size. Formally, the sieve is an operator ~: if X is the material put
into the sieve, v(X) is the material that remains in the sieve. Then this sieve
operator 7 is anti-extensive because it loses matter, and does not add any. It
is also increasing, because if you put more particles or bigger ones in the sieve,
more particles will remain in it.

Composing sieve operations means applying a first sieve, then throwing the
matter kept by it into the second one. When the two sieves are the same, the
second sieving operation is useless, everything remains the same. Thus the
sieve is idempotent. If the two sieves correspond to two distinct sizes, then the
double sieving is equivalent to a single sieving for the bigger size. Formally, if
the two openings s and ~y correspond to the two sizes s and s’ respectively,
then we have

VsVs" = Vs’ Vs = Tmax(s,s’)- (1)

A well-know opening is that by a structuring element. Given a structuring
element B (a priori B can be any member of our space S of pictorial objects,
but we generally take B to be small), it transforms a picture X into the the
supremum of all translates of B that lie inside X. In a formal setting, we write:

XoB=\/{r(B)|T€T, 7(B) < X}. (2)

Here T is the group of all “translations” of our space S. Other openings include
taking the supremum of openings by several structuring elements. See [9] for
more details. We illustrate in Figure 1 the opening by a structuring element in
the case of sets.

The operation where we discard what remains in the sieve and collect what
falls from it will be considered in the next section, under the name top-hat.
The composition of two such operations amounts to putting two sieves on top
of each other, and collecting what falls from this combination; this amounts to
collecting what falls from the sieve for the smaller size only, so we will have the
contrary of (1), namely min(s, s') instead of max(s, s').

2.2. Removing isolated particles

This operation was first proposed by Serra in [12], and it was studied in depth
in [9]. Here the idea is to remove parts of a picture not because they are too
small, but because they are isolated.
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XoB

F1GURE 1. Here both images and structuring elements are subsets of the Eu-
clidean plane. a) The structuring element B. b) The figure X. c¢) The opening
X o B of X by B (in dark grey) superimposed on X, shown in light grey.

We suppose that an image is made by superposing coloured points; for sets,
these are just ordinary points, while for grey-level images they are points with
a grey-level attached to it, and for RGB colour images, they are points to which
a triple of RGB values is attached. When one superposes two or more coloured
points at the same location, their colour or grey-level values are combined by
taking the largest grey-level, or the largest value in each RGB band.

We assume a neighbourhood relation ~ on the coloured points constituting
the image; this relation is symmetrical in the sense that p ~ ¢ <= ¢q ~ p.
Then we transform the image by removing from it every coloured point p such
that there is in the image no coloured point ¢ such that p ~ ¢. The remaining
image will be constituted of the superposition of all pairs of coloured points
p, q from the original image, such that p ~ ¢. This operation is anti-extensive
because it removes points, and does not add any. It is also increasing, because
the bigger the original image, the more points it contains, and so the more it
can contain pairs p,q with p ~ ¢. Finally, it is idempotent, because the pairs
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b) C)

FI1GURE 2. Here both images and structuring elements are subsets of the Eu-
clidean plane. a) The ring-shaped structuring element B centered about the
origin (marked by a cross). b) The figure X, having 7 connected components.
c¢) The annular opening X N (X @ B) of X by B; the top left connected com-
ponent is split into two, and the top right connected component has vanished.

of points p, ¢ with p ~ ¢, which constitute the filtered image, will be preserved
under further filtering,.

Originally, this operation was devised for sets, and the neighbourhood re-
lation ~ was defined through a structuring element B: p ~ ¢ iff ¢ — p € B; the
symmetry of ~ requires B to be symmetric w.r.t. origin. Then the operator
transforms a set X into X N (X @& B), where X & B designates the Minkowski
addition of X and B. Experiments were made choosing for B a ring shape, so
this new filter was then called an annular opening. We illustrate it in Figure 2.

2.8. Adaptive feature removal

Suppose that we demand to remove unwanted features in an image. We can set
a size criterion on unwanted features, taking the form “any feature smaller than
some unwanted feature must also be unwanted, and should thus be removed”.
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Assuming as before that we remove positive features, this means that the fea-
ture removing operator « is anti-extensive: y(X) < X. Here v(X) results from
removing unwanted features from X; now an image Y having the same wanted
features and non-feature elements as X, but smaller unwanted features, will
satisfy:

e y(X) <Y, because Y contains all wanted features and non-feature elements
of X;

e the difference Y — v(X) representing unwanted features of X present in Y,
is smaller than X — (X)), which represents all unwanted features of X.

Thus we have v(X) <Y < X. Now we require that those features in Y smaller
than unwanted features in X must be removed, that is v(Y) < ~(X), but
wanted features and non-feature elements must be preserved, that is v(Y) >
v(X). Hence v(Y) = v(X). We have thus obtained the two criteria for an
open-condensation given in Lemma 3. Therefore the above size criterion on
unwanted features can be interpreted as: the feature removing operator is an
open-condensation.

Every opening is an open-condensation, and satisfies thus the above crite-
rion. However openings are increasing, and this means that a wanted feature
in an image remains wanted if we add other features to the image. Now we
can envisage the situation where the status of a feature as wanted or unwanted
depends on the nature of other features present in the image.

As an example, we consider what we called in [6] a toggle of openings:
assuming a family of n openings 7,...,7,, we define the operator v which
transforms X into the “best” among all candidates v;(X),...,yn(X). Thus
Y(X) = 7(X) for some i € {1,...,n} depending on X. In [6] we gave formal
interpretations of the notion of “choosing the best”, and obtained precise cri-
teria for v to be an open-condensation. We give here a simple illustration of
this notion. Suppose that we have a valuation operator ¢» : S — V, where S
is the space of pictorial objects, and V is a set of “values”, totally ordered by
an ordering relation written <. Thus for every image X, we will compare the
“values” ¥(7;(X)) of v;(X) for i = 0,...,n. We choose then v(X) to be the
~7i(X) (i =0,...,n) such that ¢(v;(X)) is maximal for the ordering by <:

V(X)) =%(X)  where  ¢(7i(X)) = max{y(v;(X)) |j =1,...,n}.

When this maximum is attained by two or more candidates v;, (X), ..., 7, (X),
in other words

(v (X)) = -+ = P(73, (X)) = max{¢(y; (X)) | 7 = 1,...,n},

we choose between them according to an order of precedence between the in-
dices iy, ...,ix; we can for example assume that the order of precedence between
the indices decreases from 1 to n, so we choose the least one among iy, ..., i:

1= min{u €e{1,...,n} | Y(1(X)) =max{y(y;(X)) |j = 1,...,n}}
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Now we want (X)) to contain a sizeable part of X, so we require from the
valuation ¢ the criterion “the bigger, the better”, which can be interpreted
mathematically as:

Y <Z = u(Y) 2 6(2). (3)

Let us show that this guarantees that v will be an open-condensation. We
know that v is anti-extensive (because each +y; is), so we have only to satisfy
condition 5 of Lemma 3. Let v(X) = 7;(X); thus for j # i, we have either:

o (7;(X)) < ¥(r(X)), or
o p(7;(X)) = ¢(7i(X)) and i < j.

Now let Y satisfy y(X) <Y < X; as v(X) = 7;(X) and ~; is an opening, we
get v;(Y) = v(X); for j # ¢, Y < X and the fact that v; is increasing imply
that v;(Y) <v;(X). Thus from (3) we get:

P(i(Y) =v(r(X))  and  P(y;(Y)) (X)) G #9).
Hence we have either:
o (;(Y)) < ¢(n(Y)), or
e (7;(Y)) =¢(v(Y)) and i <.

Therefore we will get v(Y) = (V) = v(X) = v(X) and 7 is an open-
condensation.

A simple example of the criterion “the bigger, the better” (3) is given
by choosing the 7;(X) having greatest size (for discrete figures), or greatest
area/volume (for 2D/3D Euclidean figures). We illustrate such a “toggle” of
openings in Figure 3

3. FEATURE EXTRACTION

Openings and open-condensations could be considered together, since the latter
is just a generalization of the former; in some sense an open-condensation can
be considered as an “adaptive” opening.

We will now describe two types of feature extractors that are very different
in their conception: one of them is a generalization of the opening by a struc-
turing element that uses a second structuring element as the “negative” part
of the feature, and the other will take the arithmetic difference between the
original image and the result of a feature remover, such as an opening. Their
mathematical formalizations have nothing in common, so we will consider them
separately.

3.1. Features with positive and negative aspects
The basic idea here is that a shape is characterized by specifying not only
points that must belong to it, but also points that may not belong to it. A
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AP
Y B

XOBl YOBl ZOBl
X0B»o YOB» Z0Bo
X0B3 YOB3 Z0B3

FiGURE 3. Here both images and structuring elements are subsets of the Eu-
clidean plane. a) Three structuring elements B, B, B3. b) Three figures
X,Y,Z. c) The openings of each of X,Y, Z by By, Bs, Bs respectively (in dark
grey, superimposed on the original figure X,Y, Z, shown in light grey); for each
figure, we indicate by an arrow the opening havmg the greatest area. The
latter is selected as the result of the toggle v; thus v(X) = X o By, while
YY) =Y o By, and y(Z) = Z o Bs.

well-known example is considered in [1]. We consider as objects all subsets of
the Euclidean plane; we call them figures. For any figure F' and point p in that
plane, we write F), for the translate of F' by p. Let A be a square shape and
let X be a figure. We want to find all positions where there is in X a square
which is a translate of A. The Minkowski subtraction X © A, which consists of
all points p such that A, C X, will indeed give all positions p where a translate
of A is included in X, but at such a position X does not necessarily take the
shape of A; for example a rectangle bigger than A will give several such points
p: see Figure 4. We need in fact to have at position p the square A, included

447



b)

FIGURE 4. Here both images and structuring elements are subsets of the Eu-
clidean plane. a) Figure X. b) The two structuring elements A and B (dark
and light grey, resp.); the origin, located at the top left corner of A, is marked
by a dot. c) Superimposed on X (displayed in grey), we show (in dark grey)
X © A, giving all locations where a translate of A is included in X. The
hit-or-miss transform (X & A) N (X¢ o B) of X by (A, B) gives all positions
p where the figure X contains a square A, surrounded by a strip B, in the
background X¢; here it reduces to a single point, indicated with an arrow.

in figure X, but at the same time A, must be surrounded by points which do
not belong to X. Let B be a narrow strip surrounding A (we have AN B = );
write X¢ for the complement of X (it is called the background). Then we will
have a square shape in X at every position p where A, C X and B, C X°. We
get the hit-or-miss transform of X by (A, B):

(XeA)N(X°eB)={p|A4, C X and B, C X}. (4)

We see in Figure 4 that this gives indeed the precise locations where X takes
the shape of a square which is a translate of A.

This example shows that the notion of a square shape is characterized both
by a positive aspect (the points of the square) and a negative aspect (the
surrounding points which are not in the square). In order to display the squares
located by (4), we take the Minkowski addition of this set and A:

(XeAnEX eB)]aAd=|J{4,|4, CX and B, C X°}. (5)
Such an operation is not restricted to our particular example where A is the
square and B is the surrounding strip; it can be generally defined for any two

disjoint structuring elements A and B. Now take C' = B¢; note that since
AN B =0, we must have A C C. The condition B, C X°¢ can be rewritten
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Z=y(X) Y=y(Y)

X

FIGURE 5. Write v for the operation of (5) with the structuring elements of
Figure 4. Two figures X,Y such that v(X) C Y C X will satisfy v(X) C v(Y).

X C (), and the above equation becomes:
XoA0) =[XednEXec)ed=J{4,14,CXCC}  (6)

This new operation © was defined in [7]. Note that for B = () (that is C' is the
whole space), (5)—(6) reduce to the opening X o A of X by A. We have thus a
generalization of the opening by a structuring element.

Such an operation extracting features defined in terms of a positive shape
A and a negative shape B is certainly anti-extensive, but it has also another
property: consider a figure X transformed by this feature extractor into Z,
which is a union of translates of A inside X to which correspond translates of
B outside X; for any figure Y such that Z C Y C X, Y will contain these
translates of A (because Z C Y'), and the corresponding translates of B, being
outside X, will be outside Y (because Y C X). Thus the features present in X
are also present in Y, and the result of the feature extractor on Y will contain
Z; it can even be larger than Z, as shown in Figure 5. If we designate by «
this feature extractor, we can write

YX)CY CX = 7(X) Cy(Y).

We give now a general definition (from [7]) of the type of mathematical
operation involved. We do not restrict ourselves to sets, but our pictorial
objects belong to the ordered set S, as explained in the previous section:

DEFINITION 4. An open-overcondensation on S is an operator v : S — S
satisfying the following three requirements:
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1. v is anti-extensive.
2. 7 is idempotent.
6. v is overcondensing: if X <Y < Z and v(X) = v(2), then v(X) < v(Y).

It should be noted that every open-condensation, in particular every open-
ing, is an open-overcondensation. There is an alternate definition of open-
overcondensations (see Lemma 2.3 of [7]):

LEMMA 5. An operator v : S — S is an open-overcondensation if and only it
satisfies the following two requirements:

1. v is anti-extensive.
7. y(X) <Y <X = y(X) <q(Y).

A typical open-overcondensation is the generalization to an ordered set S
of (6), namely

XoA,C) =\[{r(A)|7€T, r(4) <X <7(C)} (A<O). ()

Here (as in (2)) T is the group of all “translations” of our space S. Note
that when C is the greatest element 1 of S (namely for sets, 1 is the whole
space, while for grey-level/colour images, 1 is the image having the greatest
grey-level /colour on all points), X @ (A4,C) reduces to X o A. Other open-
overcondensations include taking the supremum of such operations (7) with
several pairs of structuring elements (A, C) satisfying A < C; this means in
practice extracting several types of features from the image. These two facts im-
ply that open-overcondensations represent a generalization of openings, where
we add to each structuring element a second one representing the negative
aspect of the shape. See [7] for more details.

3.2. Ezxtracting features by subtracting an opening

Given an anti-extensive feature remover y, we can in some way extract the
features removed by 7 from an image X by taking the arithmetic difference
X — v(X). For grey-level images on a space E, this means that we take the
image having at every point p € E the difference X (p) — v(X)(p) of grey-
levels of X and y(X) at p; for colour images, we take the arithmetic difference
between the R, G, and B levels of X and v(X) at p. For subsets of space E, this
difference must be interpreted as the set subtraction X \ v(X); indeed every
set A C E can be identified with its characteristic function x4 : E — {0,1},
and for v(X) C X we have xx\,(x) = XX — X~(X)-

There is a general technical problem of specifying when two images can be
arithmetically added or subtracted. For example binary images with values
in {0,1} associated to points (in other words characteristic functions of sets)
cannot always be added or subtracted, because this could lead to values 2 or
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—1, outside the range {0,1}. For grey-level or colour images, mathematical
morphology requires the set of grey-levels or RGB values to be closed, so one
generally chooses for it the extended real line R = R U {£o0}, the extended
integer line Z = Z U {£o00}, a closed real interval [a, ], or an integer interval
[a...b] = [a,b]NZ. For the extended real or integer line, the problem is dealing
with the subtraction +00 — 0o, while for a real or integer interval, we can by
adding or subtracting images obtain values outside the interval. We will exclude
here infinite values, and assume a general principle of the form: addition and
subtraction of images is always possible, as long as it remains within bounds.
More formally, the object space S (i.e., the family of all images) satisfies the
following: given

Ag,A,A1,By,B,B; € S suchthat Ay < A< A; and By < B < By,
we have

Ao+ Bp, A1 +B1 €S — A+BeSand A+ By <A+ B <A, + By,
and

Ao —B1,A1 —ByeS = A-BeSand Agy—B1 <A-B<A — B,

This principle is for example satisfied when S consists of all numerical functions
with values in an interval of R or Z (grey-level images with bounded real or
integer grey-levels), or vector-valued functions with values in an interval of R™
or Z™ (e.g., for m = 3, RGB colour images with bounded real or integer RGB
values).

Note that for grey-level and colour images, X —y(X) is an image having non-
negative grey-levels (resp. RGB values) at each point. In a more formal way,
we write 0 for the image which is the neutral for addition (X +0=0+X =X
for every image X): it has zero grey-level (resp. RGB value) at each point; then
Y(X) < X leads to X —y(X) > 0. Since we will examine the possibility of
idempotence of the operator X — X —~y(X), it is possible (but not necessary)
to restrict the scope of v (in other words the object space S) to positive images,
that is images X > 0. In other words, we can assume that the set of grey-levels
or RGB values consists only of non-negative numbers.

Let us write id for the identity operator X — X on S; then we will write
id — v for the operator X — X — v(X). Such an operator has sometimes been
called a top-hat in the literature. Indeed, as it extracts a particular type of
feature and removes other features as well as non-feature elements, it tends to
show isolated features standing on a zero background, and the grey-level (or
colour) profile of such a feature looks then like a top-hat. In some sense, every
feature extractor, in particular the open-overcondensation defined in (7), could
be called a “top-hat”.

If we return to the sieve analogy used above for openings, the sieve performs
on the matter put into it two complementary operations: first an opening -y
that keeps in the sieve all particles larger than the size corresponding to the

451



sieve, second a top-hat id — -y that collects all smaller particles falling from the
sieve. The composition of two top-hats amounts to putting the two sieves on
top of each other, and collecting what falls from this combination. When the
two sieves are the same, the second sieve is useless, everything falls through
it; thus a top-hat should be idempotent. If the two sieves correspond to two
distinct sizes, then this double sieving amounts to collecting what falls from
the sieve for the smaller size only, so we will have the contrary of (1):

(id = 75)(id — 7s) = (id = v5)(id — 75) = id — Ymin(s,s')- (8)

When the two openings s and 7, satisfy (1), we do not necessarily get (8); in
particular, for an opening «, id — + is generally not idempotent. We will give
below conditions for this idempotence.

Write 0 for the constant operator X — 0 on §. We have a general result
concerning conditions for satisfying (8):

LEMMA 6. Let v,v' be anti-extensive operators S — S. Then:
(i) (id —v)(id =) = id = 7" iff v(id —+') = 0.
(i) (id = y)(id = 7') =id —v iff y(id =) =7 =",
ProoF We have
(id —v)(id —v') = id(id —7') —y(id = +') =id — 7' — y(id — 7).
Thus (id — y)(id — ') = id — v iff id — ' — y(id — ') = id — «/, that is

~v(id — ') = 0, and (i) holds. On the other hand, (id —v)(id — ') = id — v iff
id—v' —y(id—~') = id — v, that is y(id —v') = y—+/, and (ii) holds. Q.E.D.

A particular case of (i) is that id — ~ is idempotent iff v(id — v) = 0.

We introduced the sieving analogy for openings. So we could expect that
in order to use it for a top-hat id — 7, we should assume that 7 is an opening.
Indeed, we will obtain some results that are valid only with that assumption.

We recall from [9] that an invariant of v is some X € S such that v(X) = X,
and we write Inv(y) for the family of all invariants of 4. Now every opening
~ is uniquely characterized by its family Inv(y) of invariants (Corollary 2.4 of
[9]), and Inv(y) is closed under the supremum operation \/ (Proposition 2.2 of
9).

Before giving our next condition for the idempotence of a top-hat id —v, we
must make an assumption on S which is analogous to the Archimedes axiom for
reals, saying that for two reals a > 0 and b > 0 there is a natural integer n such
that nb > a. We require that for A, B € S such that A >0, B > 0 and B # 0,
there is a natural integer n such that either nB ¢ S, or nB € S but nB £ A
(NB. nB is defined here as the addition B+- - -+ B of n times B). Note that we
have added the possibility nB ¢ S in order to take into account the case where
S is a family of numerical functions having values in a bounded range, in which
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case adding successively B to itself can lead to values outside the bounds; the
same would happen with the Archimedes axiom if we had restricted its scope
to reals in an interval I: there is some n € N such that either nb ¢ I, or
nb € I but nb > a. We say then that S is Archimedean. This axiom is always
satisfied when S is a family of numerical functions with values in a subset of
R (namely, grey-level images), or vector functions with values in a subset of
R™ (for example RGB colour images for m = 3, multimodal images, etc.); in
particular it is satisfied with S consisting of sets (which can be interpreted as
functions with binary values in {0,1}). It excludes only exotic object spaces,
such as functions whose values include numbers which are “infinitely larger”
than other ones (such as in non-standard arithmetic).

We will now give a sufficient condition for an opening «y to give an idempo-
tent top-hat id — v. We assume that S, besides being Archimedean, consists
only of positive images:

THEOREM 7. Let S be Archimedean and such that for every X € S we have
X > 0. Let vy be an opening on S such that for every B € Inv(y) and every
integer n > 1 with nB € S§ we must have nB € Inv(y). Then id — v is
idempotent, and for every opening v' satisfying v'v = v we have (id —~")(id —
7) =id — 7.

PrOOF By Lemma 6 (i), we have only to satisfy that v(id — ) = 0, in other
words every X € S gives v(X — v(X)) = 0. Let Z = y(X — v(X)); write
Y =X —~v(X), so Z =~(Y). As ~ is idempotent, we have Z = (Z), that
is Z € Inv(y). We show now by induction that for every integer n > 0 we
have nZ € § and nZ < X. This is certainly true for n = 0: X > 0 = 0Z.
Supposing the property true for n, we show it forn+1. If nZ € Sand nZ < X,
we must have nZ € Inv(vy): this comes from hypothesis for n > 1, while for
n = 0, we have y(0) < 0 by anti-extensivity of v and 0 < (0) by hypothesis,
so 0Z = 0 € Inv(y). Now as 7 is increasing, we get nZ = y(nZ) < y(X); as
v is anti-extensive, we have Z <Y = X — ~(X); since 0 < nZ < v(X) and
0 < Z < X —v(X), we deduce by summing both inequalities that (n+1)Z € S
and (n+1)Z < X. By induction hypothesis, the property is thus true for every
integer n > 0; as Z > 0, the axiom that S is Archimedean implies that Z = 0.
Therefore v(X — (X)) = 0 and id — v is idempotent.
Given an opening v satisfying v’y = 7', the equality v(id — v) = 0 gives

7'(id —7) =+'y(id - 7) =4'0 =0,
and Lemma 6 (4) implies then that we have (id —+')(id —v) = id —v. Q.E.D.

In [6] we called a para-opening an increasing and anti-extensive operator =y
such that id — 7 is idempotent. We showed in particular (see Proposition 4.6
of [6]) that a supremum \/,_; 7; of para-openings ; is a para-opening.

When S is the set of parts of a space E of points, Theorem 7 holds for
every opening, because the hypothesis is always satisfied. Indeed for B C F,
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either B = () and then nB = B for every integer n > 1, or B # () and then we
have 1B = B but nB ¢ S for n > 2. For grey-level images, the result holds
for flat openings [2, 3|, because here the image is processed by operating on
“grey-level slices” (for a grey-level ¢, such a slice consists of all points having
grey-level > t), and so for every B € Inv(y) and every scalar A with AB € S
we have AB € Inv(y). The reader is refered to pp. 119,120 of [6] for a deeper
explanation of this point.

Note that the hypothesis of Theorem 7 is not a necessary condition for
the idempotence of id — v. We have the following counterexample with grey-
level functions: we take the opening v whose invariants are all non-negative
functions f : R? — [0,2] such that there is an open subset G' of R? with which
f(z) =1 for an irrational € G, f(x) > 1 for a rational z € G, f(z) = 0 for an
irrational ¢ G, and f(z) > 0 for a rational z ¢ G; then clearly X —(X) has
value 0 on every rational point, so 7(X — (X)) = 0; however the hypothesis
of Theorem 7 is not satisfied.

Note that for grey-level functions, if 7 is the opening by a structuring func-
tion B (transforming X into X o B, see (2)), where B is a compactly supported
function, then it can be shown that id — v is idempotent if and only if B is
constant on its support, in other words the opening is flat, in which case the
hypothesis of Theorem 7 is satisfied. This result is illustrated in Figure 6 of
[6], where we give an extreme example of an infinitely descending sequence
(id — 7)"(X).

We would like to have conditions ensuring that openings satisfying (1) will
also satisfy (8). Given two openings 7,7', we have (see Proposition 2.3 of [9]):

Y <y = =7 = 1'=9 < Inv(y) CInv(y). (9)
If id — v is idempotent, then we see from the proof of Theorem 7 that (9) gives
(id —v')(id — v) = id — . However, this does generally not give (id — ) (id —
~") =id — 7. As seen in Lemma 6 (i) the necessary and sufficient condition is
~v(id — +") = v — ', which is generally not satisfied, even when S is the set of

parts of a space of points: we give an example in Figure 6.
Note that for sets, it is easily seen that every X gives always

X\ (X)) SHX)N (X \ (X)) =v(X) \7'(X) C X \¥(X),

in other words:
Y(id =v") <y -9 <id - 4"
Applying 7 to every term of this inequality, this gives

y(id =) =v(y —9"). (10)

We conjecture that in order to obtain y(id —v') = v —+' from (9), it must
be necessary to make assumptions on v and 4’ related to connectedness, where
the latter notion does not need to be taken in a topological sense. Indeed,
in mathematical morphology purely algebraic axioms have been given for the
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2.8
B B

y(X)=XoB v'(X)=XoB’

A VN

X\v'(X) YX)\y'(X)

FIGURE 6. Here both images and structuring elements are subsets of the Eu-
clidean plane. a) The two structuring elements B and B’; the openings 7, v’
defined by v(X) = X o B and v/(X) = X o B’ satisfy (9). b) The set X. c¢) Su-
perimposed on X (light grey), the sets y(X), v (X), X\v'(X), and v(X)\+'(X)
(in dark grey); we have v(X \ /(X)) =0 # v(X) \ ¥/ (X).

abstract notion of a connectivity class (see Chapter 2 of [12], Subsection 1.1
of [5], and [8]): in a space E a connectivity class is a family C of subsets of E
(the elements of C are the “connected” subsets of E), such that (a) § € C and
Vr € E, {z} € C; (b) for B C C such that (B # 0, we have |JB € C. These
axioms include as particular cases connectedness in a topological space and in
a graph.

For example suppose that for every set X, +'(X) is a union of connected
components of X, and for every invariant B of -, all connected components of
B are invariants of 7; then v(X) \ v'(X) = v(X) \ v'(v(X)) will consist of a
union of connected components of v(X) (namely those not selected by +'), and
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so it will be invariant under ~, and (10) will give

Y(X\ Y (X)) =v7(v(X)\ V(X)) =v(X) \ ¥ (X),

that is v(id — v') = v — 4'. Therefore (id — v')(id — 7) = id — ~ in this case.

It seems that we cannot find a property related to order, like condensation
or overcondensation, for the feature extractor id — v. However, such operators
can be used in the construction of open-condensations, as shown in Section 4
of [6].

4. CONCLUSION

We have reviewed the concrete meaning (semantics) and algebraic properties
of several types of feature removers and feature extractors. Our collection is
certainly far from complete, especially since we restricted ourselves to anti-
extensive operators, in other words we remove only positive features or non-
feature elements from the image. In fact, this article is only an informal and
partial introduction to the theory of morphological feature extraction/removal.
There is a wider theory of idempotent operators having various properties re-
lated to order; this is a subject of ongoing research, with new works published
every year. See [4, 12] for some well-known results.

The theory of openings [4, 9, 11, 12] is classical, although new types of
openings can be invented, with a new semantical interpretation (this happened
for example with annular openings, see Subsection 2.2). Although more recent,
the theory of open-overcondensations [7] is very regular and has many parallels
with that of openings. However, the intermediate concept of open-condensation
does not lend itself so easily to such a regular theory; it gives rather a family
of tools for constructing open-condensations [6]; these tools have a somewhat
algorithmic nature [10] adapted to the notion of progressive coding of pictures.
Finally the theory of top-hats of the form id — « for an opening v has never
been systematically studied; this is partly due to the difficulty arising from a
combination of a morphological operator with an arithmetic subtraction. In
the case of sets, this subtraction becomes a set difference, so it can be more
easily interpreted within the framework of mathematical morphology, but even
in this case severe restrictions seem necessary in order to obtain the sieving
property (8) corresponding to that (1) for openings.

To our knowledge, Theorem 7 has never been stated explicitly in the liter-
ature, although some forms of it were already known: in the case of sets, it is
trivial to show that id —+ is idempotent for every increasing and anti-extensive
v, while for grey-level functions, the idempotence of id — « for a flat opening
«v is a kind of “folk theorem”, and its proof is given on pp. 119,120 of [6].
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